核级抛光树脂的反应可逆性与再生能力
我公司生产的抛光树脂分为18兆和15兆的一箱5包,一包
专业生产销售超纯水树脂,主要用于DI水、超纯水系统的后置精混床,即核子级混床所用,保证优质低价。抛光树脂当进水在5μs/cm,出水水质电阻≥
注:抛光树脂是阴阳离子树脂混合在一起的,我们出厂就以按比例混合好了,客户直接装填使用就可以,无需再生,使用起来方便,快捷,效果好!
抛光混床树脂是再生型高转型率阳阴混合树脂,阳树脂为H型,阴树脂为OH型,此时阳、阴树脂因正负电荷的作用力而抱团在一起,形成无数级复床,水流通过混床树脂后经过无数级的交换过滤,值得高纯度的水质。阳树脂的H+离子与水中的Ca2+、Mg2+、Na+等阳离子发生置换反应,阴树脂的OH-与水中硫酸根,氯根等阴离子发生置换反应,阳树脂置换出的H+与阴离子置换出的OH-离子结合形成H2O。但随着使用时间的延长,树脂的交换能力会逐渐下降(也即H+和OH-逐渐被相应离子所交换),阳阴树脂之间的静电也会减弱,终树脂失效后导致分层。
另外分层的原因还有使用与装填过程中的一些不合理工艺引起,比如树脂装天前,在罐体内加入过多水,导致混合树脂分层;比如混合树脂在使用过层中,停停用用导致水流反冲(反冲类似于对混合树脂的反洗)导致混合树脂分层等多种原因都会引起分层情况的发生。
混合树脂分层后,无数级的复床也即不存在,比重较轻的阴树脂会在上层,比重较大的阳树脂会往下沉,这个时候由于离子交换的不同步,会导致混床树脂出水不合格,周期制水量也受到较大影响。
目前国内高、超纯水用户对此产品的应用不是很了解,所以普遍存在盲目追崇昂贵的进口抛光混床树脂,而国内部分小树脂生产企业,为了获得,以不合格的低价的产品参与市场恶性低价竞争,也导致了部分用户对国产抛光树脂的不认可,希望通过交流,让广大终端用户了解产品的理化性能和应用方法。
抛光树脂产品使用及注意事项
1.抛光树脂(是由高度纯化、转型的H型阳树脂和OH型阴树脂预混合而成,如果装填和操作得当,在初的周期中即可制备出电阻率大于
2.树脂开封后长时间暴露在空气中会吸收二氧化碳,因此拆包需尽快使用。不使用部分须小心密封,存放于避光阴凉处,环境温度以5
3.在运输、储存和装填过程中,任何无机或有机物质的接触都会使树脂受到污染,从而降低出水水质;影响运行工况。因此必须保证所有用于装填、操作的设备和水不会污染树脂。所有与树脂接触的水都必须使用高纯水(本文中所涉及到的水均指"高纯水",即电阻率大于等于
4.如为换装树脂,设备中原有的旧树脂必须从树脂容器中移去,树脂容器内部清洁无杂质。
抛光树脂一般用于超纯水处理系统末端,来保证系统出水水质维持用水标准。出水水质都能达到18兆欧以上,以及对TOC、SIO2都有一定的控制能力。
核级抛光树脂的反应可逆性与再生能力离子交换树脂主要的化学性质这一就是能进行离子交换反应,并且这个反应是可塑的。当含有Na+的水与H型树脂相遇时,即产生下述反应:RH+Na+→RNa+H+这个反应实际上是离子交换的制水过程,这个过程是遵循“等电荷摩尔量"(即等当量)进行的;反之,当用盐酸(或硫酸)通过Na型树脂时,则会有下面的反应:Rna+H+→RH+Na+这个反应实际上是阳离子树脂失效后的再生反应。 需要说明的是,上述两个反应向哪个方向进行,决定于当时水中各种离子的浓度。
离子交换树脂
失效离子交换树脂的再生交换能力
当把含有Ca2+的水通入Na型离子交换树脂时,Na型树脂即吸着水中的Ca2+,并把本身含有的Na+释放出来:2Rna+Ca2+→R2Ca+2Na+ 交换反应的结果,除去了水中的Ca2+。当上述交换反应达到平衡时,根据质量作用定律,可得出:KNaCa=式中KNaCa—平衡常数;[R2Ca]、RNa]—分别表示反应达到平衡时。
树脂中Ca2+,Na+的浓度,mol/L;[Ca2+]、[Na+]—分别表示反应达到平衡时,水中的Ca2+,Na+浓度,mol/L。当运行到出水中Ca2+含量开始上升时,表示树脂失效了。为了使树脂重新获得交换能力,就要用NaCl对树脂进行再生: 2NaCl+R2Ca→2Rna+CaCl2。此时,尽管KNaCa>1,不利于树脂的再生。但由于再生时,NaCl的浓度很高,而Ca2+的浓度又很小,就可以使再生反应进行下去。所以在化学水处理中,就是通过提高再生剂的浓度,反复利用离子交换平衡的移动,使失效的树脂重要获得交换能力。
离子交换树脂
关于树脂的产品特点
1、高的再生转型率。
2、超纯水出水低的离子和金属残留特性。
3、低的TOC溶出物。
4、超纯水混床树脂仅需4倍床层体积的冲洗便能使出水达到18.2Mcm。
离子交换树脂
5、树脂颗粒无裂纹率>95。
6、高度耐磨性,防止使用过程中出现破碎。
7、的机械完整性。化学离子交换树脂具有更好的动力学性能,有更高的交换容量和运行流速,使再生时的废水量大幅下降,树脂颗粒更均匀,更易再生,冲洗速度快,离子泄漏率低,强度更高不易破损,树脂年补充量低,使终用户制水成本大幅降低。